Ishanvi

Info-Soft Pvt. Ltd.

G

solidity.iisplindia.com

Solidity 0.8

YouTube Channel Link:

Solidity Github Source File

{CODE}

https://youtube.com/playlist?list=PLXiPyLU5gixBFtWVRNwfy5pDKCsNv90Z-&si=SOosZj_Fc1qk4lJP
https://github.com/Vishal-Bharvesh/solidity.git

Ishanvi

Info-Soft Pvt. Ltd.

Solidity e

Solidity was proposed in August 2014 by Gavin Wood. The language was

later developed by the Ethereum project's Solidity team, led by Christian
Reitwiessner. Solidity is the primary language on Ethereum as well as on
other private blockchains, such as the enterprise-oriented Hyperledger
Fabric blockchain.

1. Solidity is an object-oriented, high-level language for implementing
smart contracts. Smart contracts are programs that govern the
behavior of accounts within the Ethereum state.

2. Solidity is designed to target the Ethereum Virtual Machine (EVM). It is
influenced by C++, Python, and JavaScript.

3. Solidity is statically typed, supports inheritance, libraries, and complex
user-defined types.

4. With Solidity, you can create contracts for uses such as voting,

crowdfunding, blind auctions, and multi-signature wallets.

This Solidity E-Learniong series aimed at helping smart contract developers
build better contracts and applications on Ethereum or EVM-based

blockchains.

The series covers aspects of the Solidity smart contract language, including

addresses, mappings, bytes, structs, arrays, interface, and many more...

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity & Remix e

Solidity

« Solidity is an object-oriented, high-level language for implementing
smart contracts. Smart contracts are programs that govern the
behavior of accounts within the Ethereum state.

« Solidity is designed to target the Ethereum Virtual Machine (EVM). It is
influenced by C++, Python, and JavaScript.

« Solidity is statically typed, supports inheritance, libraries, and complex
user-defined types.

. With Solidity, you can create contracts for uses such as voting,
crowdfunding, blind auctions, and multi-signature wallets.

Remix

« Remix IDE is used for the entire journey of smart contract development
by users at every knowledge level. It requires no setup, fosters a fast
development cycle, and has a rich set of plugins with intuitive GUIs.
The IDE comes in two flavors (web app or desktop app) and as a
VSCode extension.

« Remix Online IDE, see: https://remix.ethereum.org

« Supported browsers: Firefox, Chrome, Brave.

Bibliography/References
https://docs.soliditylang.org/en /v0.8.20/
https://remix-ide.readthedocs.io/en/latest/#

E-IE 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity Basic Syntax e

Pragma

e Pragma is generally the first line of code within any Solidity file.
pragma is a directive that specifies the compiler version to be used for
current Solidity file.

e Solidity is a new language and is subject to continuous improvement
on an on-going basis. Whenever a new feature or improvement is
introduced, it comes out with a new version. The current version at the
time of writing was 0.8.18.

e With the help of the pragma directive, you can choose the compiler
version and target your code accordingly, as shown in the following
code example:

e pragma Solidity 70.8.18;

e Although it is not mandatory, it is a good practice to declare the
pragma directive as the first statement in a Solidity file.

SPDX License List

e The SPDX (Software Package Data Exchange) License List is a list of
commonly found licenses and exceptions used in free and open source
and other collaborative software or documentation.

e The purpose of the SPDX License List is to enable easy and efficient
identification of such licenses and exceptions in an SPDX document, in
source files or elsewhere.

e The SPDX License List includes a standardized short identifier, full
name, vetted license text including matching guidelines markup as
appropriate, and a canonical permanent URL for each license and

exception.

El . E 1|Page
solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity Basic Syntax e

Contracts

e A contract in the sense of Solidity is a collection of code (its functions)
and data (its state) that resides at a specific address on the Ethereum
blockchain.

e Contracts in Solidity are similar to classes in object-oriented languages.
They contain persistent data in state variables, and functions that can
modify these variables.

e (Calling a function on a different contract (instance) will perform an
EVM function call and thus switch the context such that state
variables in the calling contract are inaccessible.

e A contract and its functions need to be called for anything to happen.
There is no “cron” concept in Ethereum to call a function at a
particular event automatically.

YouTube Link:

https://www.youtube.com/embed/RyUBESJiV-g

Bibliography/References
1. https:/ /www.oreilly.com
2. https:/ /spdx.org/licenses/preview/#:~:text=The%20SPDX%20License
%?20List%?20is,in%20source%20files%200r%20elsewhere.
3. https://docs.soliditylang.org/en /v0.8.19 /contracts.html

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/RyUBESJiV-g
https://www.youtube.com/embed/RyUBESJiV-g

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | DataTypes e

Value DataTypes Details

. Signed/Unsigned integers - Integer data types store whole numbers,
with signed integers storing both positive and negative values and
unsigned integers storing non-negative values.

o Booleans - Boolean data type is declared with the bool keyword, and
can hold only two possible constant values, true or false.

o Fixed-point numbers - Fixed point numbers represent decimal numbers
in Solidity, although they aren’t fully supported by the Ethereum
virtual machine yet.

o Addresses - The address type is used to store Ethereum wallet or
smart contract addresses, typically around 20 bytes. An address type
can be suffixed with the keyword “payable”, which restricts it to store
only wallet addresses and use the transfer and send crypto functions.

. Byte arrays - Byte arrays, declared with the keyword “bytes”, is a fixed-
size array used to store a predefined number of bytes up to 32, usually
declared along with the keyword (bytes1, bytes2).

o Literals - Literals are immutable values such as addresses, rationals
and integers, strings, unicode and hexadecimals, which can be stored
in a variable.

« Enums - Enums, short for Enumerable, are a user-defined data type,
that restrict the value of the variable to a particular set of constants
defined within the program.

o Contract & Function Types - Similar to other object oriented languages,
contract and function types are used to represent classes and their
functions respectively. Contracts contain functions that can modify the
contract’s state variables.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Solidity | DataTypes

Ishanvi

Info-Soft Pvt. Ltd.

€

Value Datatype and Keywords

Type Keyword Details
Boolean bool true/false
Integer int/uint Signed and unsigned integers of varying sizes
_ , Signed int from 8 bits to 256 bits. int256 is the
Integer int8 to int256 .
same as int.
Int uint8 to Unsigned int from 8 bits to 256 bits. uint256 is
nteger
& uint256 the same as uint.
Fixed Point Signed and unsigned fixed point numbers of
fixed /unfixed)]
Numbers varying sizes.
The address type is used to store Ethereum
Addresses address wallet or smart contract addresses, typically

around 20 bytes

Reference Datatype

Reference type variables store the location of the data. They don’t share the
data directly. With the help of reference type, two different variables can
refer to the same location where any change in one variable can affect the

other one.

Type

Details

Arrays

An array is a group of variables of the same data type in which the
variable has a particular location known as an index. By using the
index location, the desired variable can be accessed. The array size
can be fixed or dynamic.

Strings |Strings are like arrays of characters. When we use them, we might

2|Page

(=] E solidity.iisplindia.com

[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | DataTypes e

Type Details

occupy bigger or shorter storage space.

Solidity allows users to create and define their own type in the form
of structures. The structure is a group of different types even though
Struct |it’s not possible to contain a member of its own type. The structure is
a reference type variable that can contain both value type and

reference type

Mapping is the most used reference type, that stores the data in a
. |key-value pair where a key can be any value type. It is like a hash
Mapping - . .
table or dictionary as in any other programming language, where

data can be retrieved by key.

YouTube Link:

https://www.youtube.com/embed/m7q2154xgyE

Solidity Source File

'{CODE}

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/m7q2I54xgyE
https://www.youtube.com/embed/m7q2I54xgyE
http://solidity.iisplindia.com/resourcefiles/Chapter3.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Variable e

State Variables
e Declared at contract level.
e Permanently stored in contract storage.
e Can be set as constants.
e Expensive to use they cost gas.
e Initialised at declaration using a constructor or after contract

deployment by calling Setters Functions.

Local Variables
e Declared inside functions.
e If using the memory keyword and are structure they are allocated at
run time memory keyword cannot be used at contract level.

e Memory mainly use with address or string variables.

YouTube Link:

https://www.youtube.com/embed/I11x7-i7U9fY

Solidity Source File

‘ {CODE}

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

https://www.youtube.com/embed/I1x7-j7U9fY
https://www.youtube.com/embed/I1x7-j7U9fY
http://solidity.iisplindia.com/resourcefiles/Chapter4.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Scope of Variables e

Scope of local variables is limited to function in which they are defined
but State variables can have three types of scopes.

e Public - Public state variables can be accessed internally as well
as via messages. For a public state variable, an automatic getter
function is generated.

e Internal - Internal state variables can be accessed only internally
from the current contract or contract deriving from it without
using this.

e Private — Private state variables can be accessed only internally
from the current contract they are defined not in the derived

contract from it.

YouTube Link:

https://www.youtube.com/embed/0O56DJrZN7RY

Solidity Source File

‘ {CODE}

E|.E 1|Page

solidity.iisplindia.com
[=]

https://www.youtube.com/embed/O56DJrZN7RY
https://www.youtube.com/embed/O56DJrZN7RY
https://www.youtube.com/embed/O56DJrZN7RY
http://solidity.iisplindia.com/resourcefiles/Chapter5.sol

Solidity | Operators e

Ishanvi

Info-Soft Pvt. Ltd.

Solidity supports the following types of operators

o Arithmetic Operators
« Assignment Operators
. Relational Operators

o Logical Operators

o Ternary Operator

« Bitwise Operators

Arithmetic Operators

Arithmetic operators are used to perform arithmetic or mathematical

operations
Operation Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Increment ++ (add 1)

Decrement — (subtract 1)

Modulus % (X % y gives the remainder of the integer division of x by
y)

Exponent ** (p**q is p to the power of q)

Ez7E

1|Page

solidity.iisplindia.com

[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Operators e

Assignment Operators
Assignment operators shorten the code for the assignment of a value to a
variable

Operation Operator Symbol

Assignment =

Add assignment +=

Subtract assignment -=

Multiply assignment *=

Divide Assignment /=

Modulus Assignment %=

Relational Operators
Relational operators are the ones you will use in your conditions to compare
two Data values or results

Operator Symbol Operator Details

Assignment =

returns true if two values are equal, false otherwise.
IT°S TWO EQUAL SIGNS!!! The single equal sign is

== (equal) : :
the operator used to assign a value to a variable,

don’t confuse them!

returns true if two values are not equal, false
'= (not equal) otherwise

> (greater than) returns true if the left value is greater than the right

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Operators e

Operator Symbol Operator Details
value, false otherwise.
>= (greater than or returns true if the left value is greater than or equal
equal to) to the right value, false otherwise.

returns true if the left value is less than the right
< (less than) .
value, false otherwise.

<= (less than or equal [returns true if the left value is less than or equal to

to) the right value, false otherwise.

Logical Operators
Logical operators are used to combine two or more conditions or Boolean

results

Operator Symbol Operator Details

) returns true if both conditions are true, returns false
&& (logical AND) _
otherwise.

_ returns true if at least one condition is true, returns
| | (logical OR) .
false otherwise.

| (logical NOT) returns true if the condition is false and returns false
! (logica
8 if the condition is true.

3|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Operators e

Ternary Operators
Ternary operators is a shortcut to deal with simple if / else conditions.
Syntax:

condition ? valuelfConditionIsTrue : valuelfConditionIsFalse
Bitwise Operators

Bitwise operators work directly on bit to perform bit-level operations, with O
and 1

Operator Symbol Operator Details

o performs boolean AND operation on each bit of integer
& (bitwise AND)
argument.

L performs boolean OR operation on each bit of integer
| (bitwise OR)

argument.
A (bitwise XOR = performs boolean exclusive OR operation on each bit of
Exclusive OR) integer argument.

o performs boolean NOT operation on each bit of integer
~ (bitwise NOT)
argument.

. moves all bits of the first operand to the left by the
<< (left shift) :
number of places specified by the second operand.

. . moves all bits of the first operand to the right by the
>> (right shift) :
number of places specified by the second operand.

Bibliography/References
1. https://coinsbench.com/solidity-4-operators-conditions-736a2c3faeff

4|Page

(=] E solidity.iisplindia.com
[=]

Solidity | Decision Making e

E%

[=]

Ishanvi

Info-Soft Pvt. Ltd.

Decision-making statements, also known as conditional statements,
determine program direction and flow by specifying boolean
expressions evaluated to true or false, enabling or disabling code

execution.

o if statement - if and else ‘if and else’ statements check whether
a condition is true or false. If the condition is true, it executes
some particular set of codes and if the condition is false, it
executes some other set of codes.

if statement Syntax

if (condition)

{

Statement or block of code to be executed
if condition is True

E 1|Page

solidity.iisplindia.com

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Decision Making e

o if.. else statement - if and else ‘if and else’ statements check
whether a condition is true or false. If the condition is true, it
executes some particular set of codes and if the condition is false,

it executes some other set of codes.

if.. else statement Syntax

if (condition)

{
statement or block of code to be executed
if condition is True

¥

else

{
statement or block of code to be executed
if condition is False

¥

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Decision Making e

o if.. else if.. statement — Chain 'if and else' statements with extra

'‘else if' for additional conditions.

if.. else if... statement Syntax

if (conditionl) {
// code

} else if (condition2) {
// code

} else if (condition3) {
// code

} else {
// code

}

YouTube Link:

https://www.youtube.com/embed/YLL1TNrLur8

Solidity Source File

{CODE}

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/YLL1TNrLur8
https://www.youtube.com/embed/rW5KYqWMn7k
http://solidity.iisplindia.com/resourcefiles/Chapter8.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Loop e

Looping meant, directs a program to perform a set of operations again and
again until a specified condition is achieved, which causes the termination
of the loop. Programming language Solidity contains three statements for

looping:

¢ while loop
e do... while loop

e for loop

while loop

While loop construct contains the condition first. If the condition is satisfied,
the control executes the statements following the while loop else, it ignores

these statements. The general form of while loop is:

while(condition)

{

statementl;

statement2;

do... while loop

do-while loop construct is another method used in Solidity programming.
do-while loop ensures that the program is executed atleast once and checks
whether the condition at the end of the do-while loop is true or false. As long
as the test condition is true, the statements will be repeated. The control will
come out from the loop, only when the test condition is false. The do-while
loop has the following form:

E|.E 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Loop e

do

{
statementl;
statement2;

...........

while(condition);

The blocks of statements with in double braces {} following the word do are
executed at least once. Then the condition is evaluated. If the condition is
true, the block of statements are executed again until the value of condition

tested is false.

for loop
for loop construct is used to execute a set of statements for a given number

of times. Thus, it is a shorthand method for executing statements in a loop.

The syntax is:

for(initial condition; test condition; incrementer or decrementer)

{

statementl;

statement2;

b

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Loop e

for loop construct requires to specify three characteristics. These are:
1. The initial value of the loop counter;

2. Testing the loop counter value to determine whether its current value
has reached the number of repetitions desired;

3. Increasing or decreasing the value of loop counter by a specified
number, each time the program segment is executed

YouTube Link:

https://www.youtube.com/embed/rW5KYqWMn7k

Solidity Source File

{CODE}

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/rW5KYqWMn7k
https://www.youtube.com/embed/rW5KYqWMn7k
http://solidity.iisplindia.com/resourcefiles/Chapter8.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | String e

In Solidity data types are classified into two categories: Value type and
Reference type.

1. Strings in Solidity is a reference type of data type which stores the
location of the data instead of directly storing the data into the variable.

2. They are dynamic arrays that store a set of characters that can consist
of numbers, special characters, spaces, and alphabets.

3. Strings in solidity store data in UTF-8 encoding.

4. Like JavaScript, both Double quote(” “) and Single quote(‘) can be

used to represent strings in solidity.

String and Memory

1. It is important to know that you can not just return a string in solidity
because it has to go somewhere, a string has to be stored. In order to
store it, we want to let solidity know to store our string to memory.

2. memory is much like RAM.

3. memory in Solidity is a temporary place to store data whereas storage
holds data between functions.

4. The Solidity Smart Contract can use any amount of memory during
execution, but once the execution stops, the memory is completely

wiped off for the next execution.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | String e

Escape Characters

Character Description
\” Double quote
\’ Single quote
\n Starts a new line
\\ Backslash
\t Tab
\1 Carriage return
\b Backspace
\xNN Hex escape
\uNNNN Unicode escape

Bytes to String Conversion

Bytes can be converted to String using string() constructor.
bytes memory bstr = new bytes(10);
string message = string(bstr);

YouTube Link:

https://www.youtube.com/embed/pcwKAaptTEw

Solidity Source File

{CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/pcwKAaptTEw
https://www.youtube.com/embed/pcwKAaptTEw
https://www.youtube.com/embed/pcwKAaptTEw
http://solidity.iisplindia.com/resourcefiles/Chapter9.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Array e

Arrays are data structures that store the fixed collection of elements of the
same data types in which each and every element has a specific location
called index.

Instead of creating numerous individual variables of the same type, we just
declare one array of the required size and store the elements in the array
and can be accessed using the index.

In Solidity, an array can be of fixed size or dynamic size.

Arrays have a continuous memory location, where the lowest index

corresponds to the first element while the highest represents the last.

Fixed-size Arrays

The size of the array should be predefined. The total number of elements
should not exceed the size of the array

<data type>| | <array name> = <initialization>

Dynamic Arrays

The size of the array is not predefined when it is declared. As the elements
are added the size of array changes and at the runtime, the size of the array
will be determined.

<data type>| | <array name> = <initialization>[Valuel,Value?2,.....]

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Array e

Array Operations

1. Accessing Array Elements
2. Length of Array

3. Push

4. Array slices

5. Pop

YouTube Link:

https://www.youtube.com/embed/CwZJofnli44

Solidity Source File

i {CODE} | {CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/CwZJofn1i44
https://www.youtube.com/embed/CwZJofn1i44
http://solidity.iisplindia.com/resourcefiles/Chapter10.sol
http://solidity.iisplindia.com/resourcefiles/Chapter10b.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Enum e

Enum(Enumeration)

Enumerations offer an easy way to work with sets of related constants.
An enumeration, or Enum, is a symbolic name for a set of values.
Enumerations are treated as data types, and you can use them to create

sets of constants for use with variables and properties.

Benefits of using Enumerations

Whenever a procedure accepts a limited set of variables, consider using an
enumeration. Enumerations make for clearer and more readable code,

particularly when meaningful names are used.

When to Use an Enumeration

1. Reduces errors caused by transposing or mistyping numbers.

2. Makes it easy to change values in the future.

3. Makes code easier to read, which means it is less likely that errors will
creep into it.

4. Ensures forward compatibility. With. enumerations, your code is less
likely to fail if in the future someone changes the values corresponding

to the member names.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Enum e

YouTube Link:

https://www.youtube.com/embed/xyg7Hkis9y0

Solidity Source File

{CODE}

Bibliography/References
https:/ /learn.microsoft.com/en-us/dotnet/visual-basic/programming-
guide/language-features/constants-enums /when-to-use-an-enumeration

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/xyg7Hkis9y0
https://www.youtube.com/embed/xyg7Hkis9y0
http://solidity.iisplindia.com/resourcefiles/Chapter11.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Mapping e

Mapping in Solidity is a hash table storing key-value pairs, linking unique
Ethereum addresses to corresponding value types, similar to dictionaries in

other languages.

Any other variable type that accepts a key type and a value type is referred

to as mapping.

Syntax
mapping(key => value) <access specifier> <name>;

You can think of mappings as hash tables, Hash tables initialize keys to

default values, with zeros representing byte-representations.
1. _KeyType — can be any built-in types plus bytes and string. No
reference type or complex objects are allowed.
2. _ValueType — can be any type.

Please Note:

Mapping can only have type of storage and are generally used for state

variables.

Mapping can be marked public. Solidity automatically create getter for it.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Info-Soft Pvt. Ltd.

Solidity | Mapping @Ishanvi

YouTube Link:

https://www.youtube.com/embed/x5-vsYxzLG8

Solidity Source File

‘ {CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/x5-vsYxzLG8
https://www.youtube.com/embed/x5-vsYxzLG8
http://solidity.iisplindia.com/resourcefiles/Chapter12.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Struct e

In Solidity, a struct is a flexible data structure format that allows several
data types to be combined into a single variable or a special type. A struct's
name designates the subsets of variables it contains after the data types
have been grouped into it.

Think of structs as containers that can hold various kinds of objects so that
when you move the container, all the contents move with it. As a result, a
struct replies in accordance with the data types contained in it when a

Solidity developer declares or calls the name of the struct.

1. You can develop more complex data types with various characteristics
using Solidity's structures. By building a struct, you can declare
whatever type you want.

2. They are helpful for collecting related data into one category.

3. Structures may be imported into one contract from another after being
declared outside of it. It often serves as a record representation. The
struct keyword, which generates a new data type, is used to define a

structure.

Syntax

struct <structure_name>

{

<data type> variable_1;
<data type> variable_2;

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Struct e

Declaration

1. Declare a Struct Inside a Contract
2. Declare a Struct outside a Contract with Import Access

YouTube Link:

https://www.youtube.com/embed/1hYj rrpMas

Solidity Source File
|

{CODE} | {CODE} | {CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/1hYj_rrpMas
https://www.youtube.com/embed/1hYj_rrpMas
http://solidity.iisplindia.com/resourcefiles/Chapter13.sol
http://solidity.iisplindia.com/resourcefiles/Chapter13a.sol
http://solidity.iisplindia.com/resourcefiles/Chapter13b.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Global Variables e

Global Variable List:

Sr.No. Global Variable Description

1 blockhash(uint Hash of the given block - only works for 256 most
blockNumber) recent, excluding current, blocks
returns
(bytes32)

2 block.coinbase Current block miner's address.
(address
payable)

3 block.difficulty = current block difficulty.
(uint)

4 block.gaslimit Current block gaslimit.
(uint)

5 block.number Current block number.
(uint)

§) block.timestamp Current block timestamp as seconds since unix

epoch.

7 gasleft() returns Remaining gas.
(uint256)

8 msg.data Complete calldata.
(bytes calldata)

9 msg.sender Sender of the message (current call).
(address
payable)

E-IE 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Global Variables e

10 msg.sig (bytes4) First four bytes of the calldata (i.e. function
identifier)
11 msg.value Number of wei sent with the message.
(uint)
12 now (uint) Current block timestamp (alias for

block.timestamp).

13 tx.gasprice Gas price of the transaction.
(uint)

14 tx.origin Sender of the transaction (full call chain).
(address
payable)

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Functions e

Functions are code blocks that perform specific tasks for different input
parameters without repeating lines of code. For example, a function can add
two numbers by taking the input and summating the numbers without
repeating the same lines. This approach simplifies the process of performing

tasks without repeating lines of code.

Solidity function visibility specifiers

The visibility of the function decides who can access the function, based on

this there are four visibility specifies.

. Private: accessible only inside the current contract.
Internal: accessible inside the current contract and in child contracts.

External: can be accessed only outside the contract.

s b=

. Public: these are accessible from everywhere, from inside and outside
of a contract, also public functions create getter functions for state

variables.

Solidity function state mutability

Functions in solidity have certain behavior which can be determined by the
state mutability of that function, which tells us how they interact with data

stored on the blockchain.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Functions e

Functions in solidity can be declared as view, pure or payable.

1. View: functions that read the state (data stored on blockchain) but do
not modify the state are declared as view.

2. Pure: these are neither read nor modify the state and are declared as
pure functions.

3. Payable: functions declared as payable allow the function to send and
receive the ether, if a it is not marked as payable it will reject the ether
sent to it.

YouTube Link:

https://www.youtube.com/embed/IxcOjaipbkE

Solidity Source File

i {CODE} ’ {CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/lxcOjaipbkE
https://www.youtube.com/embed/lxcOjaipbkE
http://solidity.iisplindia.com/resourcefiles/Chapter15.sol
http://solidity.iisplindia.com/resourcefiles/Chapter15b.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Contracts e

Solidity’s code is encapsulated in contracts which means a contract in
Solidity is a collection of code (its functions) and data (its state) that resides
at a specific address on the Ethereum blockchain. A contract is a

fundamental block of building an application on Ethereum.

POP vs OOP vs BOP

Sr.No. Title Short Language Details

1 Procedure POP C-Language Functions and
Oriented Procedure
Programming

2 Object Oriented OOP CPP / Java / Classes
Programming C# Languages @ State & Functions

3 Block Oriented BOP Solidity Contracts
Programming Language State & Functions

Contract Declaration Flow:

Pragma:

Pragmas are instructions to the compiler on how to treat the code. All
solidity source code should start with a “version pragma” which is a
declaration of the version of the solidity compiler this code should use. This
helps the code from being incompatible with the future versions of the

compiler which may bring changes.

Contract:
The contract keyword declares a contract under which the code is

encapsulated.

E-IE 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Contracts e

State variables:
State variables are permanently stored in contract storage that is they are
written in Ethereum Blockchain.

A function:

Functions are code blocks that perform specific tasks for different input
parameters without repeating lines of code. The most common way to define
a function in Solidity is by using the function keyword, followed by a unique
function name, a list of parameters (that might be empty), and a statement

block surrounded by curly braces.

YouTube Link:

https://www.youtube.com/embed/5AmL611KdIO

Solidity Source File

‘{CODE}

Bibliography/References
https:/ /spdx.dev/about/

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/5AmL611Kdl0
https://www.youtube.com/embed/5AmL611Kdl0
http://solidity.iisplindia.com/resourcefiles/Chapter16.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Constructor e

A constructor is a function in Solidity that contains initialization logic for
state variables. It is invoked only when the smart contract is deployed, and

cannot be invoked again.

If not defined explicitly, the compiler creates a default constructor. To
declare a constructor, use the constructor keyword followed by the access
specifier, which can be public or internal. A contract with an internal
constructor is considered abstract and cannot be deployed.

When inheriting a contract, the child contract must provide the parent
contract's constructor parameters. If the child contract doesn't, it's marked
as abstract and not deployed. If no explicit constructor is defined, the

default constructor will be called.

Key Points:

1. A contract has a single constructor.

2. Executed once to initialize its state.

3. The final code, including public functions and code accessible through
public functions, is deployed to the blockchain.

4. Constructors can be public or internal, and if no constructor is defined,

a default constructor is present.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Constructor e

YouTube Link:

https://www.youtube.com/embed/dYfuCI7Vao8

Solidity Source File

|

‘{CODE}

Bibliography/References
https:/ /cryptomarketpool.com /constructor-in-solidity-smart-contracts/

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/dYfuCI7Vao8
https://www.youtube.com/embed/dYfuCI7Vao8
http://solidity.iisplindia.com/resourcefiles/Chapter17.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Inheritance e

What is Inheritance?

Solidity's inheritance feature enables programmers to extend contractor
attributes and properties to derived contracts, allowing developers to modify
them through overriding.

This sets Solidity apart from Java, as it allows multiple inheritances,
allowing a derived contract to have multiple parent contracts
simultaneously. This allows a single contract to inherit from multiple

contracts.
Key Points:

1. A derived contract can access all non-private members including state
variables and internal methods. But using this is not allowed.

2. Function overriding is allowed provided function signature remains the
same. In case of the difference of output parameters, the compilation
will fail.

3. We can call a super contract’s function using a super keyword or using
a super contract name.

4. In the case of multiple inheritances, function calls using super gives

preference to most derived contracts.

EI . E 1|Page
solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Inheritance e

Using the “is” Keyword in Solidity

To create a derived (or inheriting) contract, simply use the is keyword, as

demonstrated in the example code below:

A is a derived contract of B
contract A is B{
//Code

As mentioned earlier, Solidity allows for multiple inheritances. You can

implement multiple inheritances in solidity as shown in this sample code:

contract A{
//Code

single inheritance
contract B is A{
//Code

#multiple inheritance
contract C is A,B {
//Code

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Inheritance e

The implementation above has been carefully chosen to demonstrate a
particularly interesting case of multiple inheritances in Solidity. Take note
that one of the contracts that C is deriving from is also a derived contract.
That is, contract B is also derived from contract A.

This is not an error — Solidity allows this type of multiple inheritances as

well, and your code should compile without any errors.

Types of Inheritance in Solidity

1. Single Inheritance: In Single or single level inheritance the functions
and variables of one base contract are inherited to only one derived
contract.

2. Multi-level Inheritance: It is very similar to single inheritance, but the
difference is that it has levels of the relationship between the parent
and the child. The child contract derived from a parent also acts as a
parent for the contract which is derived from it.

3. Hierarchical Inheritance: In Hierarchical inheritance, a parent
contract has more than one child contracts. It is mostly used when a
common functionality is to be used in different places.

4. Multiple Inheritance: In Multiple Inheritance, a single contract can be
inherited from many contracts. A parent contract can have more than

one child while a child contract can have more than one parent.

3|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Inheritance e

YouTube Link:

https://www.youtube.com/embed/aEL8IpsCB10

Solidity Source File

Single Inheritance ' {CODE}

Multi-level Inheritance ' {CODE}

{CODE}

Hierarchical Inheritance

Multiple Inheritance

’{CODE}

4|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/aEL8IpsCB10
https://www.youtube.com/embed/aEL8IpsCB10
http://solidity.iisplindia.com/resourcefiles/Chapter18a.sol
http://solidity.iisplindia.com/resourcefiles/Chapter18b.sol
http://solidity.iisplindia.com/resourcefiles/Chapter18c.sol
http://solidity.iisplindia.com/resourcefiles/Chapter18d.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Interface e

Interfaces are a concept in programming languages that separate the
declaration of a function from its actual behavior.

In Solidity, interfaces act as contracts or agreements between the interface
and any contract that implements it. By using the interface of a contract,
users are bound to use the functions declared in the interface within their

contract.
The interface serves as the skeleton of a smart contract, providing a rough
idea for other smart contracts to build functionalities and implement them

within their contracts.

Why do we use Interfaces?

The interface is a tool used to interact with existing smart contracts on the
blockchain, such as the ERC20 token standard contract.

Openzeppelin offers an ERC20 interface for customization, allowing users to

create ERC20 tokens according to their specifications.

By creating an interface, users can upgrade contracts based on their
features and functionalities, but must customize the skeleton and use the

declared functions.

For instance, if users want to inherit functions from another contract

without access to its code, they can use an interface to call other contracts.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Interface e

Interfaces Restrictions

So as [mentioned in the introduction, interfaces in solidity are a more
restricted form of abstract contracts. Like in abstract contracts we must
have at least one function without its implementation, interface adds some

more restrictions to that.

Following are the constraints for the interface to use :

. You can not declare state variables in the interface.
You can not use the constructor inside and interface.

You are also not allowed to write modifiers in the interface.

s b=

. You can only declare the functions inside the interface and can not
define them inside the interface.

5. All declared functions inside the interface must be external.

YouTube Link:

https://www.youtube.com/embed/V1-tLzM q3c

Solidity Source File

‘{CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/V1-tLzM_q3c
https://www.youtube.com/embed/V1-tLzM_q3c
http://solidity.iisplindia.com/resourcefiles/Chapter19.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Events e

Events are notifications that provide alerts when important events occur,
such as new video uploads.

In Solidity, events work by logging important messages on the Ethereum
Virtual Machine (EVM), which can be read from blockchain nodes. These
logs can be written to the blockchain, making them crucial for smart
contract developers.

Events enable communication between smart contracts and their user
interfaces, consuming less gas and being cheaper as they are not accessed

by smart contracts.

This makes events an essential aspect of smart contract development, as

they enable important alerts to the front end or user interface.

Why Use Events?

1. Events are essential in blockchain application building as they help
users and clients stay informed about ongoing processes and
transactions.

2. They help users understand the status of transactions, allowing them
to wait or cancel transactions based on the results of processing.

3. This is particularly useful when communication with smart contracts
is limited.

4. Events send updates on ongoing processes to the user interface,
enabling users to stay informed about the transaction's progress and

make informed decisions.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Events e

How to use events in solidity?

1. Declaring an Event: To define an event you start with the keyword
“event” followed by the name of the event and parameters wrapped
inside ().
event AccountSwitched(address indexed from, bytes32 indexed to);

2. Emitting an Event: You emit an event in the respective function by
writing a emit keyword followed by the name of the event and the
specified parameters wrapped inside the ().

emit AccountSwitched(from, to);

3. Parameters passed to the events: There are two types of parameters
you can pass to an event
a. Indexed Parameters — Indexed parameters are searchable
parameters and help to query events. They are also called “topics”.
b. Non-Indexed Parameters — Non-Indexed parameters are regular
parameters passed to an event that is not searchable and are only
used to log the messages to the blockchain.

2|Page

(=] E solidity.iisplindia.com
[=]

Info-Soft Pvt. Ltd.

Solidity | Events @ Ishanvi

YouTube Link:

https://www.youtube.com/embed/Q1FHFPsYI-w

Solidity Source File

‘ {CODE}

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/Q1FHFPsYI-w
https://www.youtube.com/embed/Q1FHFPsYI-w
http://solidity.iisplindia.com/resourcefiles/Chapter20.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Error Handling e

How does error handling work in Solidity?
Solidity is an object-oriented programming language for implementing smart
contracts on blockchains like Ethereum.

It uses state-reverting exceptions to handle errors, undoing changes made
to the state in the current call and flagging an error to the caller.

Solidity ensures atomicity as a property by reverting state changes in smart

contract calls when errors occur.

Developers can directly interact with other contracts by declaring interfaces.

On the Ethereum blockchain, transactions are atomic, meaning they are

either fully complete or have no effect on state and are reverted entirely.

Three main Solidity error handling functions?

assert : Assert is a crucial function in programming to check for code that
should never be false, preventing impossible scenarios. If it returns a true
value, a terminal bug will be displayed and programs will not execute.
Unlike require and revert functions, assert.consumes gas supply before
reversing the program to its original state. Prior to the Byzantium fork, both

functions behaved identically, but compiled to distinct opcodes.

require : The require function is a gate check modifier that checks inputs
and conditions before execution. It acts as a gate check, preventing logic
from accessing the function and producing errors. Require statements
declare prerequisites for running the function, which must be satisfied

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Error Handling e

before code execution. The function accepts a single argument and returns a
boolean value of true or false. If the execution is terminated due to a false
condition, unused gas is returned to the caller and the state is reversed to
the original state. Customer string messages can also be added.

revert : Revert is a function that does not evaluate conditions or depend on
states or statements. It handles error types like require but is more suitable
for complex logic gates. When called, unused gas is returned, and the state
reverts to its original state. Revert also allows adding custom messages,

similar to the require function.

Require vs. Revert vs. Assert

Require:
e Used at the beginning of a function
e Validates against illegal input
e Verifies state conditions prior to execution
e Refunds leftover gas
Revert:
e Identical to require
e Useful for more complex logic flow gates (i.e., complicated if-then
blocks)
e Refunds leftover gas
Assert:
e Used at the end of a function
e Validates something that is impossible
e Critical for static code analysis tools

e Does not refund leftover gas

2|Page

(=] E solidity.iisplindia.com
[=]

Info-Soft Pvt. Ltd.

Solidity | Error Handling @Ishanvi

YouTube Link:

https://www.youtube.com/embed/InmVij4G seY

Solidity Source File

‘ {CODE}

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/InmVj4G_seY
https://www.youtube.com/embed/InmVj4G_seY
http://solidity.iisplindia.com/resourcefiles/Chapter21.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Modifiers e

Function modifiers can be used to automatically check a condition before

executing a function, serving various use cases.
These modifiers can be executed before or after the function's code, and are
necessary when a specific condition is not met. If the given condition is not

met, the function will not be executed.

Two variations of a function modifier

1. Function modifier with an argument:

modifier modifier_name(unit arg)

{

// action to be taken

2. Function modifier without argument:

modifier modifier_name|)

{

// action to be taken

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Modifiers e

What is Merge Wildcard?
The _; symbol is known as Merge Wildcard and this is replaced by the

function definition during execution.

e In other words, after this wildcard has been used, the control is moved
to the location where the appropriate function definition is located.

e This symbol is mandatory for all modifiers.

e The modifier may contain this wildcard anywhere.

e When the wildcard is placed at the end of the modifier, the condition is
verified and the appropriate function is executed if it is satisfied.

e When it is placed at the beginning, the appropriate function is

executed first followed by the condition verification.

YouTube Link:

https://www.youtube.com/embed/Rek2rwA6V A

Solidity Source File

‘ {CODE}

2|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/Rek2rwA6V_A
https://www.youtube.com/embed/Rek2rwA6V_A
http://solidity.iisplindia.com/resourcefiles/Chapter22.sol

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Fallback Function e

The solidity fallback function is executed when no other functions
match the function identifier or no data is provided.

It is only assigned to unnamed functions and is executed when a
contract receives plain Ether without data.

The fallback function must be marked payable to add Ether to the total
balance of the contract. Without such a function, the contract cannot

receive Ether through regular transactions and throws an exception

Key Points:

1. Declare with fallback() and have no arguments.

2. If it is not marked payable, the contract will throw an exception if
it receives plain ether without data.

3. Can not return anything.

4. Can be defined once per contract.

5. It is also executed if the caller meant to call a function that is not
available or receive() does not exist or msg.data is not empty.

6. It is mandatory to mark it external.

7. It is limited to 2300 gas when called by another function by using
transfer() or send() method . It is so for as to make this function

call as cheap as possible.

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Fallback Function e

fallback()
This function is called for all messages sent to this contract, except
plain Ether transfers (there is no other function except the receive

function). Any call with non-empty calldata to this contract will execute.

receive()
This function is called for plain Ether transfers, i.e. for every call with
empty calldata.

Bibliography/References
https:/ /www.geeksforgeeks.org/solidity-fall-back-function/

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Payable Function e

A payable function in Solidity is a function that can receive Ether and

respond to an Ether deposit for record-keeping purposes.

All about Payable

e In a smart contract, Payable ensures that money goes into and
out of the contract. Solidity functions with a modifier Payable can
send and receive Ether transactions, but cannot handle
transactions with zero Ether values. If a function does not include
the payable keyword, the transaction will be automatically
rejected. For example, a receive() function with the payable
modifier can receive money in the contract, but a send() function

without the payable modifier will reject the transaction.

e Fallback payable functions in Solidity are helpful for ensuring
transactions go through if someone sends money to the contract
without the payable modifier. It is recommended to use a version
of a function with the noname and payable modifiers, with the
function name being "noname" instead of "payable." "Payable" is

the word that describes the function.

Function declaration with no name:

function () public payable {

You can define a payable function using the following syntax:

function receive() payable {}
function send() payable {}

E-lﬁ 1|Page

solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Payable Function e

Solidity supports several methods of transferring ether between the

contracts.
1. address.send(amount)
2. address.transfer(amount)
3. address.call.value(amount)()

address.send(amountValue)

Send is the first method for sending ether between contracts. It has a
2300 gas limit for a contract's fallback function, which is not enough
for multiple events. If send() fails due to gas shortage, it returns false
but does not throw an exception. Therefore, it should be inside the
require function. If gas is not paid, transactions cannot be submitted

to the blockchain, and changes will be rolled back.

address.transfer(amountValue)

The transfer method has a limit of 2300 gas, but developers proposed
adding a.gas() modifier to change the limit. Unlike the send() method,
the transfer() method throws an exception when it fails, indicating that

the transaction was executed incorrectly.

address.call.value(amountValue)()

The call function is the most personalized method for sending ether,
but it will return false if an error occurs. The main difference from
previous functions is that the.gas(gasLimit) modifier allows setting the
gas limit, especially for complex ether payment functions that require a

significant amount of gas.

2|Page

(=] E solidity.iisplindia.com
[=]

Ishanvi

Info-Soft Pvt. Ltd.

Solidity | Payable Function e

YouTube Link:

https://www.youtube.com/embed/4Clg68-HiQU?si=w-hDSi 5BhlWXXpl

Solidity Source File

|

‘{CODE}

Bibliography/References
https:/ /www.showwcase.com /show /33658 /payable-functions-in-solidity

3|Page

(=] E solidity.iisplindia.com
[=]

https://www.youtube.com/embed/4Clg68-HiQU?si=w-hDSi_5BhlWXXpl
https://www.youtube.com/embed/4Clg68-HiQU?si=w-hDSi_5BhlWXXpl
http://solidity.iisplindia.com/resourcefiles/Chapter24.sol

